Hierarchical Siamese Network for Thermal Infrared Object Tracking
Most thermal infrared (TIR) tracking methods are discriminative, which treat the tracking problem as a classification task. However, the objective of the classifier (label prediction) is not coupled to the objective of the tracker (location estimation). The classification task focuses on the between-class difference of the arbitrary objects, while the tracking task mainly deals with the within-class difference of the same objects. In this paper, we cast the TIR tracking problem as a similarity verification task, which is well coupled to the objective of tracking task. We propose a TIR tracker via a hierarchical Siamese convolutional neural network (CNN), named HSNet. To obtain both spatial and semantic features of the TIR object, we design a Siamese CNN coalescing the multiple hierarchical convolutional layers. Then, we train this network end to end on a large visible video detection dataset to learn the similarity between paired objects before we transfer the network into the TIR domain. Next, this pre-trained Siamese network is used to evaluate the similarity between the target template and target candidates. Finally, we locate the most similar one as the tracked target. Extensive experimental results on the benchmarks: VOT-TIR 2015 and VOT-TIR 2016, show that our proposed method achieves favorable performance against the state-of-the-art methods.
READ FULL TEXT