High Dimensional Robust Sparse Regression

05/29/2018
by   Liu Liu, et al.
4

We provide a novel -- and to the best of our knowledge, the first -- algorithm for high dimensional sparse regression with corruptions in explanatory and/or response variables. Our algorithm recovers the true sparse parameters in the presence of a constant fraction of arbitrary corruptions. Our main contribution is a robust variant of Iterative Hard Thresholding. Using this, we provide accurate estimators with sub-linear sample complexity. Our algorithm consists of a novel randomized outlier removal technique for robust sparse mean estimation that may be of interest in its own right: it is orderwise more efficient computationally than existing algorithms, and succeeds with high probability, thus making it suitable for general use in iterative algorithms. We demonstrate the effectiveness on large-scale sparse regression problems with arbitrary corruptions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset