High-Performance and Flexible Parallel Algorithms for Semisort and Related Problems
Semisort is a fundamental algorithmic primitive widely used in the design and analysis of efficient parallel algorithms. It takes input as an array of records and a function extracting a key per record, and reorders them so that records with equal keys are contiguous. Since many applications only require collecting equal values, but not fully sorting the input, semisort is broadly applicable, e.g., in string algorithms, graph analytics, and geometry processing, among many other domains. However, despite dozens of recent papers that use semisort in their theoretical analysis and the existence of an asymptotically optimal parallel semisort algorithm, most implementations of these parallel algorithms choose to implement semisort by using comparison or integer sorting in practice, due to potential performance issues in existing semisort implementations. In this paper, we revisit the semisort problem, with the goal of achieving a high-performance parallel semisort implementation with a flexible interface. Our approach can easily extend to two related problems, histogram and collect-reduce. Our algorithms achieve strong speedups in practice, and importantly, outperform state-of-the-art parallel sorting and semisorting methods for almost all settings we tested, with varying input sizes, distribution, and key types. We also test two important applications with real-world data, and show that our algorithms improve the performance over existing approaches. We believe that many other parallel algorithm implementations can be accelerated using our results.
READ FULL TEXT