HitGNN: High-throughput GNN Training Framework on CPU+Multi-FPGA Heterogeneous Platform
As the size of real-world graphs increases, training Graph Neural Networks (GNNs) has become time-consuming and requires acceleration. While previous works have demonstrated the potential of utilizing FPGA for accelerating GNN training, few works have been carried out to accelerate GNN training with multiple FPGAs due to the necessity of hardware expertise and substantial development effort. To this end, we propose HitGNN, a framework that enables users to effortlessly map GNN training workloads onto a CPU-Multi-FPGA platform for acceleration. In particular, HitGNN takes the user-defined synchronous GNN training algorithm, GNN model, and platform metadata as input, determines the design parameters based on the platform metadata, and performs hardware mapping onto the CPU+Multi-FPGA platform, automatically. HitGNN consists of the following building blocks: (1) high-level application programming interfaces (APIs) that allow users to specify various synchronous GNN training algorithms and GNN models with only a handful of lines of code; (2) a software generator that generates a host program that performs mini-batch sampling, manages CPU-FPGA communication, and handles workload balancing among the FPGAs; (3) an accelerator generator that generates GNN kernels with optimized datapath and memory organization. We show that existing synchronous GNN training algorithms such as DistDGL and PaGraph can be easily deployed on a CPU+Multi-FPGA platform using our framework, while achieving high training throughput. Compared with the state-of-the-art frameworks that accelerate synchronous GNN training on a multi-GPU platform, HitGNN achieves up to 27.21x bandwidth efficiency, and up to 4.26x speedup using much less compute power and memory bandwidth than GPUs. In addition, HitGNN demonstrates good scalability to 16 FPGAs on a CPU+Multi-FPGA platform.
READ FULL TEXT