How to Make Your Approximation Algorithm Private: A Black-Box Differentially-Private Transformation for Tunable Approximation Algorithms of Functions with Low Sensitivity

10/07/2022
by   Jeremiah Blocki, et al.
0

We develop a framework for efficiently transforming certain approximation algorithms into differentially-private variants, in a black-box manner. Our results focus on algorithms A that output an approximation to a function f of the form (1-a)f(x)-k <= A(x) <= (1+a)f(x)+k, where 0<=a <1 is a parameter that can be“tuned" to small-enough values while incurring only a poly blowup in the running time/space. We show that such algorithms can be made DP without sacrificing accuracy, as long as the function f has small global sensitivity. We achieve these results by applying the smooth sensitivity framework developed by Nissim, Raskhodnikova, and Smith (STOC 2007). Our framework naturally applies to transform non-private FPRAS (resp. FPTAS) algorithms into (ϵ,δ)-DP (resp. ϵ-DP) approximation algorithms. We apply our framework in the context of sublinear-time and sublinear-space algorithms, while preserving the nature of the algorithm in meaningful ranges of the parameters. Our results include the first (to the best of our knowledge) (ϵ,δ)-edge DP sublinear-time algorithm for estimating the number of triangles, the number of connected components, and the weight of a MST of a graph, as well as a more efficient algorithm (while sacrificing pure DP in contrast to previous results) for estimating the average degree of a graph. In the area of streaming algorithms, our results include (ϵ,δ)-DP algorithms for estimating L_p-norms, distinct elements, and weighted MST for both insertion-only and turnstile streams. Our transformation also provides a private version of the smooth histogram framework, which is commonly used for converting streaming algorithms into sliding window variants, and achieves a multiplicative approximation to many problems, such as estimating L_p-norms, distinct elements, and the length of the longest increasing subsequence.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro