Identifying Mirror Symmetry Density with Delay in Spiking Neural Networks

08/25/2017
by   Jonathan K. George, et al.
0

The ability to rapidly identify symmetry and anti-symmetry is an essential attribute of intelligence. Symmetry perception is a central process in human vision and may be key to human 3D visualization. While previous work in understanding neuron symmetry perception has concentrated on the neuron as an integrator, here we show how the coincidence detecting property of the spiking neuron can be used to reveal symmetry density in spatial data. We develop a method for synchronizing symmetry-identifying spiking artificial neural networks to enable layering and feedback in the network. We show a method for building a network capable of identifying symmetry density between sets of data and present a digital logic implementation demonstrating an 8x8 leaky-integrate-and-fire symmetry detector in a field programmable gate array. Our results show that the efficiencies of spiking neural networks can be harnessed to rapidly identify symmetry in spatial data with applications in image processing, 3D computer vision, and robotics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset