IgNet. A Super-precise Convolutional Neural Network

09/21/2021
by   Igor Mackarov, et al.
0

Convolutional neural networks (CNN) are known to be an effective means to detect and analyze images. Their power is essentially based on the ability to extract out images common features. There exist, however, images involving unique, irregular features or details. Such is a collection of unusual children drawings reflecting the kids imagination and individuality. These drawings were analyzed by means of a CNN constructed by means of Keras-TensorFlow. The same problem - on a significantly higher level - was solved with newly developed family of networks called IgNet that is described in this paper. It proved able to learn by 100 case of a regression task (learning the young artists ages) IgNet performed with an error of no more than 0.4 design that made it possible to reach such substantial results with rather simple network topology.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro