Improved Bounds for Guarding Plane Graphs with Edges

04/19/2018
by   Ahmad Biniaz, et al.
0

An "edge guard set" of a plane graph G is a subset Γ of edges of G such that each face of G is incident to an endpoint of an edge in Γ. Such a set is said to guard G. We improve the known upper bounds on the number of edges required to guard any n-vertex embedded planar graph G: 1- We present a simple inductive proof for a theorem of Everett and Rivera-Campo (1997) that G can be guarded with at most 2n/5 edges, then extend this approach with a deeper analysis to yield an improved bound of 3n/8 edges for any plane graph. 2- We prove that there exists an edge guard set of G with at most n/3+α/9 edges, where α is the number of quadrilateral faces in G. This improves the previous bound of n/3 + α by Bose, Kirkpatrick, and Li (2003). Moreover, if there is no short path between any two quadrilateral faces in G, we show that n/3 edges suffice, removing the dependence on α.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro