Improving Attention Mechanism with Query-Value Interaction
Attention mechanism has played critical roles in various state-of-the-art NLP models such as Transformer and BERT. It can be formulated as a ternary function that maps the input queries, keys and values into an output by using a summation of values weighted by the attention weights derived from the interactions between queries and keys. Similar with query-key interactions, there is also inherent relatedness between queries and values, and incorporating query-value interactions has the potential to enhance the output by learning customized values according to the characteristics of queries. However, the query-value interactions are ignored by existing attention methods, which may be not optimal. In this paper, we propose to improve the existing attention mechanism by incorporating query-value interactions. We propose a query-value interaction function which can learn query-aware attention values, and combine them with the original values and attention weights to form the final output. Extensive experiments on four datasets for different tasks show that our approach can consistently improve the performance of many attention-based models by incorporating query-value interactions.
READ FULL TEXT