Improving Negative-Prompt Inversion via Proximal Guidance

06/08/2023
by   Ligong Han, et al.
0

DDIM inversion has revealed the remarkable potential of real image editing within diffusion-based methods. However, the accuracy of DDIM reconstruction degrades as larger classifier-free guidance (CFG) scales being used for enhanced editing. Null-text inversion (NTI) optimizes null embeddings to align the reconstruction and inversion trajectories with larger CFG scales, enabling real image editing with cross-attention control. Negative-prompt inversion (NPI) further offers a training-free closed-form solution of NTI. However, it may introduce artifacts and is still constrained by DDIM reconstruction quality. To overcome these limitations, we propose Proximal Negative-Prompt Inversion (ProxNPI), extending the concepts of NTI and NPI. We enhance NPI with a regularization term and reconstruction guidance, which reduces artifacts while capitalizing on its training-free nature. Our method provides an efficient and straightforward approach, effectively addressing real image editing tasks with minimal computational overhead.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset