Improving Neural Named Entity Recognition with Gazetteers

03/06/2020
by   Chan Hee Song, et al.
0

The goal of this work is to improve the performance of a neural named entity recognition system by adding input features that indicate a word is part of a name included in a gazetteer. This article describes how to generate gazetteers from the Wikidata knowledge graph as well as how to integrate the information into a neural NER system. Experiments reveal that the approach yields performance gains in two distinct languages: a high-resource, word-based language, English and a high-resource, character-based language, Chinese. Experiments were also performed in a low-resource language, Russian on a newly annotated Russian NER corpus from Reddit tagged with four core types and twelve extended types. This article reports a baseline score. It is a longer version of a paper in the 33rd FLAIRS conference (Song et al. 2020).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro