Improving the Lexical Ability of Pretrained Language Models for Unsupervised Neural Machine Translation

03/18/2021
by   Alexandra Chronopoulou, et al.
21

Successful methods for unsupervised neural machine translation (UNMT) employ cross-lingual pretraining via self-supervision, often in the form of a masked language modeling or a sequence generation task, which requires the model to align the lexical- and high-level representations of the two languages. While cross-lingual pretraining works for similar languages with abundant corpora, it performs poorly in low-resource, distant languages. Previous research has shown that this is because the representations are not sufficiently aligned. In this paper, we enhance the bilingual masked language model pretraining with lexical-level information by using type-level cross-lingual subword embeddings. Empirical results demonstrate improved performance both on UNMT (up to 4.5 BLEU) and bilingual lexicon induction using our method compared to an established UNMT baseline.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset