Improving the Usability of Virtual Reality Neuron Tracing with Topological Elements

by   Torin McDonald, et al.

Researchers in the field of connectomics are working to reconstruct a map of neural connections in the brain in order to understand at a fundamental level how the brain processes information. Constructing this wiring diagram is done by tracing neurons through high-resolution image stacks acquired with fluorescence microscopy imaging techniques. While a large number of automatic tracing algorithms have been proposed, these frequently rely on local features in the data and fail on noisy data or ambiguous cases, requiring time-consuming manual correction. As a result, manual and semi-automatic tracing methods remain the state-of-the-art for creating accurate neuron reconstructions. We propose a new semi-automatic method that uses topological features to guide users in tracing neurons and integrate this method within a virtual reality (VR) framework previously used for manual tracing. Our approach augments both visualization and interaction with topological elements, allowing rapid understanding and tracing of complex morphologies. In our pilot study, neuroscientists demonstrated a strong preference for using our tool over prior approaches, reported less fatigue during tracing, and commended the ability to better understand possible paths and alternatives. Quantitative evaluation of the traces reveals that users' tracing speed increased, while retaining similar accuracy compared to a fully manual approach.


page 1

page 2

page 3

page 5

page 8

page 9

page 10

page 11


Ray-VR: Ray Tracing Virtual Reality in Falcor

NVidia RTX platform has been changing and extending the possibilities fo...

Quality Control of Neuron Reconstruction Based on Deep Learning

Neuron reconstruction is essential to generate exquisite neuron connecti...

User Manual for the Apple CoreCapture Framework

CoreCapture is Apple's primary logging and tracing framework for IEEE 80...

Path Tracing in 2D, 3D, and Physicalized Networks

It is common to advise against using 3D to visualize abstract data such ...

Fully-Automatic Synapse Prediction and Validation on a Large Data Set

Extracting a connectome from an electron microscopy (EM) data set requir...

Understanding Neural Pathways in Zebrafish through Deep Learning and High Resolution Electron Microscope Data

The tracing of neural pathways through large volumes of image data is an...

NRTR: Neuron Reconstruction with Transformer from 3D Optical Microscopy Images

The neuron reconstruction from raw Optical Microscopy (OM) image stacks ...

Please sign up or login with your details

Forgot password? Click here to reset