Improving Zero and Few-Shot Abstractive Summarization with Intermediate Fine-tuning and Data Augmentation

10/24/2020
by   Alexander R. Fabbri, et al.
11

Models pretrained with self-supervised objectives on large text corpora achieve state-of-the-art performance on text summarization tasks. However, these models are typically fine-tuned on hundreds of thousands of data points, an infeasible requirement when applying summarization to new, niche domains. In this work, we introduce a general method, called WikiTransfer, for fine-tuning pretrained models for summarization in an unsupervised, dataset-specific manner which makes use of characteristics of the target dataset such as the length and abstractiveness of the desired summaries. We achieve state-of-the-art, zero-shot abstractive summarization performance on the CNN-DailyMail dataset and demonstrate the effectiveness of our approach on three additional, diverse datasets. The models fine-tuned in this unsupervised manner are more robust to noisy data and also achieve better few-shot performance using 10 and 100 training examples. We perform ablation studies on the effect of the components of our unsupervised fine-tuning data and analyze the performance of these models in few-shot scenarios along with data augmentation techniques using both automatic and human evaluation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro