Inception Convolution with Efficient Dilation Search
Dilation convolution is a critical mutant of standard convolution neural network to control effective receptive fields and handle large scale variance of objects without introducing additional computation. However, fitting the effective reception field to data with dilated convolution is less discussed in the literature. To fully explore its potentials, we proposed a new mutant of dilated convolution, namely inception (dilated) convolution where the convolutions have independent dilation among different axes, channels and layers. To explore a practical method for fitting the complex inception convolution to the data, a simple while effective dilation search algorithm(EDO) based on statistical optimization is developed. The search method operates in a zero-cost manner which is extremely fast to apply on large scale datasets. Empirical results reveal that our method obtains consistent performance gains in an extensive range of benchmarks. For instance, by simply replace the 3 x 3 standard convolutions in ResNet-50 backbone with inception convolution, we improve the mAP of Faster-RCNN on MS-COCO from 36.4 Furthermore, using the same replacement in ResNet-101 backbone, we achieve a huge improvement over AP score from 60.2 bottom up human pose estimation.
READ FULL TEXT