Independent Generative Adversarial Self-Imitation Learning in Cooperative Multiagent Systems
Many tasks in practice require the collaboration of multiple agents through reinforcement learning. In general, cooperative multiagent reinforcement learning algorithms can be classified into two paradigms: Joint Action Learners (JALs) and Independent Learners (ILs). In many practical applications, agents are unable to observe other agents' actions and rewards, making JALs inapplicable. In this work, we focus on independent learning paradigm in which each agent makes decisions based on its local observations only. However, learning is challenging in independent settings due to the local viewpoints of all agents, which perceive the world as a non-stationary environment due to the concurrently exploring teammates. In this paper, we propose a novel framework called Independent Generative Adversarial Self-Imitation Learning (IGASIL) to address the coordination problems in fully cooperative multiagent environments. To the best of our knowledge, we are the first to combine self-imitation learning with generative adversarial imitation learning (GAIL) and apply it to cooperative multiagent systems. Besides, we put forward a Sub-Curriculum Experience Replay mechanism to pick out the past beneficial experiences as much as possible and accelerate the self-imitation learning process. Evaluations conducted in the testbed of StarCraft unit micromanagement and a commonly adopted benchmark show that our IGASIL produces state-of-the-art results and even outperforms JALs in terms of both convergence speed and final performance.
READ FULL TEXT