Inference without smoothing for large panels with cross-sectional and temporal dependence

06/25/2020
by   J. Hidalgo, et al.
0

This paper addresses inference in large panel data models in the presence of both cross-sectional and temporal dependence of unknown form. We are interested in making inferences that do not rely on the choice of any smoothing parameter as is the case with the often employed "HAC" estimator for the covariance matrix. To that end, we propose a cluster estimator for the asymptotic covariance of the estimators and valid bootstrap schemes that do not require the selection of a bandwidth or smoothing parameter and accommodate the nonparametric nature of both temporal and cross-sectional dependence. Our approach is based on the observation that the spectral representation of the fixed effect panel data model is such that the errors become approximately temporally uncorrelated. Our proposed bootstrap schemes can be viewed as wild bootstraps in the frequency domain. We present some Monte-Carlo simulations to shed some light on the small sample performance of our inferential procedure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro