Informative Policy Representations in Multi-Agent Reinforcement Learning via Joint-Action Distributions

06/10/2021
by   Yifan Yu, et al.
0

In multi-agent reinforcement learning, the inherent non-stationarity of the environment caused by other agents' actions posed significant difficulties for an agent to learn a good policy independently. One way to deal with non-stationarity is agent modeling, by which the agent takes into consideration the influence of other agents' policies. Most existing work relies on predicting other agents' actions or goals, or discriminating between their policies. However, such modeling fails to capture the similarities and differences between policies simultaneously and thus cannot provide useful information when generalizing to unseen policies. To address this, we propose a general method to learn representations of other agents' policies via the joint-action distributions sampled in interactions. The similarities and differences between policies are naturally captured by the policy distance inferred from the joint-action distributions and deliberately reflected in the learned representations. Agents conditioned on the policy representations can well generalize to unseen agents. We empirically demonstrate that our method outperforms existing work in multi-agent tasks when facing unseen agents.

READ FULL TEXT
research
10/18/2022

RPM: Generalizable Behaviors for Multi-Agent Reinforcement Learning

Despite the recent advancement in multi-agent reinforcement learning (MA...
research
08/04/2021

Model-Based Opponent Modeling

When one agent interacts with a multi-agent environment, it is challengi...
research
06/04/2023

Bad Habits: Policy Confounding and Out-of-Trajectory Generalization in RL

Reinforcement learning agents may sometimes develop habits that are effe...
research
02/23/2023

K-SHAP: Policy Clustering Algorithm for Anonymous State-Action Pairs

Learning agent behaviors from observational data has shown to improve ou...
research
10/25/2022

Entity Divider with Language Grounding in Multi-Agent Reinforcement Learning

We investigate the use of natural language to drive the generalization o...
research
07/07/2022

Hyper-Universal Policy Approximation: Learning to Generate Actions from a Single Image using Hypernets

Inspired by Gibson's notion of object affordances in human vision, we as...
research
08/04/2021

Offline Decentralized Multi-Agent Reinforcement Learning

In many real-world multi-agent cooperative tasks, due to high cost and r...

Please sign up or login with your details

Forgot password? Click here to reset