Integration of bounded monotone functions: Revisiting the nonsequential case, with a focus on unbiased Monte Carlo (randomized) methods

03/01/2022
by   Subhasish Basak, et al.
0

In this article we revisit the problem of numerical integration for monotone bounded functions, with a focus on the class of nonsequential Monte Carlo methods. We first provide new a lower bound on the maximal L^p error of nonsequential algorithms, improving upon a theorem of Novak when p > 1. Then we concentrate on the case p = 2 and study the maximal error of two unbiased methods-namely, a method based on the control variate technique, and the stratified sampling method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro