Introspective Deep Metric Learning

05/09/2022
by   Chengkun Wang, et al.
0

This paper proposes an introspective deep metric learning (IDML) framework for uncertainty-aware comparisons of images. Conventional deep metric learning methods produce confident semantic distances between images regardless of the uncertainty level. However, we argue that a good similarity model should consider the semantic discrepancies with caution to better deal with ambiguous images for more robust training. To achieve this, we propose to represent an image using not only a semantic embedding but also an accompanying uncertainty embedding, which describes the semantic characteristics and ambiguity of an image, respectively. We further propose an introspective similarity metric to make similarity judgments between images considering both their semantic differences and ambiguities. Our framework attains state-of-the-art performance on the widely used CUB-200-2011, Cars196, and Stanford Online Products datasets for image retrieval. We further evaluate our framework for image classification on the ImageNet-1K, CIFAR-10, and CIFAR-100 datasets, which shows that equipping existing data mixing methods with the proposed introspective metric consistently achieves better results (e.g., +0.44 for CutMix on ImageNet-1K). Code is available at: https://github.com/wangck20/IDML.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset