Joint Models for Cause-of-Death Mortality in Multiple Populations

11/12/2021
by   Nhan Huynh, et al.
0

We investigate jointly modeling Age-specific rates of various causes of death in a multinational setting. We apply Multi-Output Gaussian Processes (MOGP), a spatial machine learning method, to smooth and extrapolate multiple cause-of-death mortality rates across several countries and both genders. To maintain flexibility and scalability, we investigate MOGPs with Kronecker-structured kernels and latent factors. In particular, we develop a custom multi-level MOGP that leverages the gridded structure of mortality tables to efficiently capture heterogeneity and dependence across different factor inputs. Results are illustrated with datasets from the Human Cause-of-Death Database (HCD). We discuss a case study involving cancer variations in three European nations, and a US-based study that considers eight top-level causes and includes comparison to all-cause analysis. Our models provide insights into the commonality of cause-specific mortality trends and demonstrate the opportunities for respective data fusion.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro