Joint Transmission in QoE-Driven Backhaul-Aware MC-NOMA Cognitive Radio Network
In this paper, we develop a resource allocation framework to optimize the downlink transmission of a backhaul-aware multi-cell cognitive radio network (CRN) which is enabled with multi-carrier non-orthogonal multiple access (MC-NOMA). The considered CRN is composed of a single macro base station (MBS) and multiple small BSs (SBSs) that are referred to as the primary and secondary tiers, respectively. For the primary tier, we consider orthogonal frequency division multiple access (OFDMA) scheme and also Quality of Service (QoS) to evaluate the user satisfaction. On the other hand in secondary tier, MC-NOMA is employed and the user satisfaction for web, video and audio as popular multimedia services is evaluated by Quality-of-Experience (QoE). Furthermore, each user in secondary tier can be served simultaneously by multiple SBSs over a subcarrier via Joint Transmission (JT). In particular, we formulate a joint optimization problem of power control and scheduling (i.e., user association and subcarrier allocation) in secondary tier to maximize total achievable QoE for the secondary users. An efficient resource allocation mechanism has been developed to handle the non-linear form interference and to overcome the non-convexity of QoE serving functions. The scheduling and power control policy leverage on Augmented Lagrangian Method (ALM). Simulation results reveal that proposed solution approach can control the interference and JT-NOMA improves total perceived QoE compared to the existing schemes.
READ FULL TEXT