KuberneTSN: a Deterministic Overlay Network for Time-Sensitive Containerized Environments

02/16/2023
by   Andrea Garbugli, et al.
0

The emerging paradigm of resource disaggregation enables the deployment of cloud-like services across a pool of physical and virtualized resources, interconnected using a network fabric. This design embodies several benefits in terms of resource efficiency and cost-effectiveness, service elasticity and adaptability, etc. Application domains benefiting from such a trend include cyber-physical systems (CPS), tactile internet, 5G networks and beyond, or mixed reality applications, all generally embodying heterogeneous Quality of Service (QoS) requirements. In this context, a key enabling factor to fully support those mixed-criticality scenarios will be the network and the system-level support for time-sensitive communication. Although a lot of work has been conducted on devising efficient orchestration and CPU scheduling strategies, the networking aspects of performance-critical components remain largely unstudied. Bridging this gap, we propose KuberneTSN, an original solution built on the Kubernetes platform, providing support for time-sensitive traffic to unmodified application binaries. We define an architecture for an accelerated and deterministic overlay network, which includes kernel-bypassing networking features as well as a novel userspace packet scheduler compliant with the Time-Sensitive Networking (TSN) standard. The solution is implemented as tsn-cni, a Kubernetes network plugin that can coexist alongside popular alternatives. To assess the validity of the approach, we conduct an experimental analysis on a real distributed testbed, demonstrating that KuberneTSN enables applications to easily meet deterministic deadlines, provides the same guarantees of bare-metal deployments, and outperforms overlay networks built using the Flannel plugin.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro