Lagrangian Method for Q-Function Learning (with Applications to Machine Translation)

07/22/2022
by   Huang Bojun, et al.
0

This paper discusses a new approach to the fundamental problem of learning optimal Q-functions. In this approach, optimal Q-functions are formulated as saddle points of a nonlinear Lagrangian function derived from the classic Bellman optimality equation. The paper shows that the Lagrangian enjoys strong duality, in spite of its nonlinearity, which paves the way to a general Lagrangian method to Q-function learning. As a demonstration, the paper develops an imitation learning algorithm based on the duality theory, and applies the algorithm to a state-of-the-art machine translation benchmark. The paper then turns to demonstrate a symmetry breaking phenomenon regarding the optimality of the Lagrangian saddle points, which justifies a largely overlooked direction in developing the Lagrangian method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro