Large Kernel Matters -- Improve Semantic Segmentation by Global Convolutional Network

03/08/2017
by   Chao Peng, et al.
0

One of recent trends [30, 31, 14] in network architec- ture design is stacking small filters (e.g., 1x1 or 3x3) in the entire network because the stacked small filters is more ef- ficient than a large kernel, given the same computational complexity. However, in the field of semantic segmenta- tion, where we need to perform dense per-pixel prediction, we find that the large kernel (and effective receptive field) plays an important role when we have to perform the clas- sification and localization tasks simultaneously. Following our design principle, we propose a Global Convolutional Network to address both the classification and localization issues for the semantic segmentation. We also suggest a residual-based boundary refinement to further refine the ob- ject boundaries. Our approach achieves state-of-art perfor- mance on two public benchmarks and significantly outper- forms previous results, 82.2 on PASCAL VOC 2012 dataset and 76.9

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro