Large Scale Probabilistic Simulation of Renewables Production

05/10/2022
by   Mike Ludkovski, et al.
0

We develop a probabilistic framework for joint simulation of short-term electricity generation from renewable assets. In this paper we describe a method for producing hourly day-ahead scenarios of generated power at grid-scale across hundreds of assets. These scenarios are conditional on specified forecasts and yield a full uncertainty quantification both at the marginal asset-level and across asset collections. Our simulation pipeline first applies asset calibration to normalize hourly, daily and seasonal generation profiles, and to Gaussianize the forecast–actuals distribution. We then develop a novel clustering approach to stably estimate the covariance matrix across assets; clustering is done hierarchically to achieve scalability. An extended case study using an ERCOT-like system with nearly 500 solar and wind farms is used for illustration.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro