Learning 6-DoF Grasping and Pick-Place Using Attention Focus

06/15/2018
by   Marcus Gualtieri, et al.
0

We address a class of manipulation problems where the robot perceives the scene with a depth sensor and can move its end effector in a space with six degrees of freedom -- 3D position and orientation. Our approach is to formulate the problem as a Markov decision process (MDP) with abstract yet generally applicable state and action representations. Finding a good solution to the MDP requires adding constraints on the allowed actions. We develop a specific set of constraints called hierarchical SE(3) sampling (HSE3S) which causes the robot to learn a sequence of gazes to focus attention on the task-relevant parts of the scene. We demonstrate the effectiveness of our approach on three challenging pick-place tasks (with novel objects in clutter and nontrivial places) both in simulation and on a real robot, even though all training is done in simulation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro