Learning a Single Tucker Decomposition Network for Lossy Image Compression with Multiple Bits-Per-Pixel Rates

07/10/2018
by   Jianrui Cai, et al.
0

Lossy image compression (LIC), which aims to utilize inexact approximations to represent an image more compactly, is a classical problem in image processing. Recently, deep convolutional neural networks (CNNs) have achieved interesting results in LIC by learning an encoder-quantizer-decoder network from a large amount of data. However, existing CNN-based LIC methods usually can only train a network for a specific bits-per-pixel (bpp). Such a "one network per bpp" problem limits the generality and flexibility of CNNs to practical LIC applications. In this paper, we propose to learn a single CNN which can perform LIC at multiple bpp rates. A simple yet effective Tucker Decomposition Network (TDNet) is developed, where there is a novel tucker decomposition layer (TDL) to decompose a latent image representation into a set of projection matrices and a core tensor. By changing the rank of the core tensor and its quantization, we can easily adjust the bpp rate of latent image representation within a single CNN. Furthermore, an iterative non-uniform quantization scheme is presented to optimize the quantizer, and a coarse-to-fine training strategy is introduced to reconstruct the decompressed images. Extensive experiments demonstrate the state-of-the-art compression performance of TDNet in terms of both PSNR and MS-SSIM indices.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset