Learning block structured graphs in Gaussian graphical models

06/28/2022
by   Alessandro Colombi, et al.
0

Within the framework of Gaussian graphical models, a prior distribution for the underlying graph is introduced to induce a block structure in the adjacency matrix of the graph and learning relationships between fixed groups of variables. A novel sampling strategy named Double Reversible Jumps Markov chain Monte Carlo is developed for block structural learning, under the conjugate G-Wishart prior. The algorithm proposes moves that add or remove not just a single link but an entire group of edges. The method is then applied to smooth functional data. The classical smoothing procedure is improved by placing a graphical model on the basis expansion coefficients, providing an estimate of their conditional independence structure. Since the elements of a B-Spline basis have compact support, the independence structure is reflected on well-defined portions of the domain. A known partition of the functional domain is exploited to investigate relationships among the substances within the compound.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset