Learning in the Model Space for Fault Diagnosis

10/31/2012
by   Huanhuan Chen, et al.
0

The emergence of large scaled sensor networks facilitates the collection of large amounts of real-time data to monitor and control complex engineering systems. However, in many cases the collected data may be incomplete or inconsistent, while the underlying environment may be time-varying or un-formulated. In this paper, we have developed an innovative cognitive fault diagnosis framework that tackles the above challenges. This framework investigates fault diagnosis in the model space instead of in the signal space. Learning in the model space is implemented by fitting a series of models using a series of signal segments selected with a rolling window. By investigating the learning techniques in the fitted model space, faulty models can be discriminated from healthy models using one-class learning algorithm. The framework enables us to construct fault library when unknown faults occur, which can be regarded as cognitive fault isolation. This paper also theoretically investigates how to measure the pairwise distance between two models in the model space and incorporates the model distance into the learning algorithm in the model space. The results on three benchmark applications and one simulated model for the Barcelona water distribution network have confirmed the effectiveness of the proposed framework.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset