Learning mixtures of spherical Gaussians: moment methods and spectral decompositions

06/25/2012
by   Daniel Hsu, et al.
0

This work provides a computationally efficient and statistically consistent moment-based estimator for mixtures of spherical Gaussians. Under the condition that component means are in general position, a simple spectral decomposition technique yields consistent parameter estimates from low-order observable moments, without additional minimum separation assumptions needed by previous computationally efficient estimation procedures. Thus computational and information-theoretic barriers to efficient estimation in mixture models are precluded when the mixture components have means in general position and spherical covariances. Some connections are made to estimation problems related to independent component analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro