Learning Pairwise Graphical Models with Nonlinear Sufficient Statistics
We investigate a generic problem of learning pairwise exponential family graphical models with pairwise sufficient statistics defined by a global mapping function, e.g., Mercer kernels. This subclass of pairwise graphical models allow us to flexibly capture complex interactions among variables beyond pairwise product. We propose two ℓ_1-norm penalized maximum likelihood estimators to learn the model parameters from i.i.d. samples. The first one is a joint estimator which estimates all the parameters simultaneously. The second one is a node-wise conditional estimator which estimates the parameters individually for each node. For both estimators, we show that under proper conditions the extra flexibility gained in our model comes at almost no cost of statistical and computational efficiency. We demonstrate the advantages of our model over state-of-the-art methods on synthetic and real datasets.
READ FULL TEXT