Learning-Rate-Free Learning: Dissecting D-Adaptation and Probabilistic Line Search

08/06/2023
by   Max McGuinness, et al.
0

This paper explores two recent methods for learning rate optimisation in stochastic gradient descent: D-Adaptation (arXiv:2301.07733) and probabilistic line search (arXiv:1502.02846). These approaches aim to alleviate the burden of selecting an initial learning rate by incorporating distance metrics and Gaussian process posterior estimates, respectively. In this report, I provide an intuitive overview of both methods, discuss their shared design goals, and devise scope for merging the two algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro