Learning Resilient Radio Resource Management Policies with Graph Neural Networks
We consider the problems of downlink user selection and power control in wireless networks, comprising multiple transmitters and receivers communicating with each other over a shared wireless medium. To achieve a high aggregate rate, while ensuring fairness across all the receivers, we formulate a resilient radio resource management (RRM) policy optimization problem with per-user minimum-capacity constraints that adapt to the underlying network conditions via learnable slack variables. We reformulate the problem in the Lagrangian dual domain, and show that we can parameterize the user selection and power control policies using a finite set of parameters, which can be trained alongside the slack and dual variables via an unsupervised primal-dual approach thanks to a provably small duality gap. We use a scalable and permutation-equivariant graph neural network (GNN) architecture to parameterize the RRM policies based on a graph topology derived from the instantaneous channel conditions. Through experimental results, we verify that the minimum-capacity constraints adapt to the underlying network configurations and channel conditions. We further demonstrate that, thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the 5th percentile rate – a metric that quantifies the level of fairness in the resource allocation decisions – as compared to baseline algorithms.
READ FULL TEXT