Learning to attend in a brain-inspired deep neural network

by   Hossein Adeli, et al.

Recent machine learning models have shown that including attention as a component results in improved model accuracy and interpretability, despite the concept of attention in these approaches only loosely approximating the brain's attention mechanism. Here we extend this work by building a more brain-inspired deep network model of the primate ATTention Network (ATTNet) that learns to shift its attention so as to maximize the reward. Using deep reinforcement learning, ATTNet learned to shift its attention to the visual features of a target category in the context of a search task. ATTNet's dorsal layers also learned to prioritize these shifts of attention so as to maximize success of the ventral pathway classification and receive greater reward. Model behavior was tested against the fixations made by subjects searching images for the same cued category. Both subjects and ATTNet showed evidence for attention being preferentially directed to target goals, behaviorally measured as oculomotor guidance to targets. More fundamentally, ATTNet learned to shift its attention to target like objects and spatially route its visual inputs to accomplish the task. This work makes a step toward a better understanding of the role of attention in the brain and other computational systems.


Predicting Goal-directed Attention Control Using Inverse-Reinforcement Learning

Understanding how goal states control behavior is a question ripe for in...

BI AVAN: Brain inspired Adversarial Visual Attention Network

Visual attention is a fundamental mechanism in the human brain, and it i...

Improving Robot Localisation by Ignoring Visual Distraction

Attention is an important component of modern deep learning. However, le...

Deep Reinforcement Learning Models Predict Visual Responses in the Brain: A Preliminary Result

Supervised deep convolutional neural networks (DCNNs) are currently one ...

Selective Particle Attention: Visual Feature-Based Attention in Deep Reinforcement Learning

The human brain uses selective attention to filter perceptual input so t...

Target-absent Human Attention

The prediction of human gaze behavior is important for building human-co...

An Initial Attempt of Combining Visual Selective Attention with Deep Reinforcement Learning

Visual attention serves as a means of feature selection mechanism in the...

Please sign up or login with your details

Forgot password? Click here to reset