Learning to Combine the Modalities of Language and Video for Temporal Moment Localization

09/07/2021
by   Jungkyoo Shin, et al.
0

Temporal moment localization aims to retrieve the best video segment matching a moment specified by a query. The existing methods generate the visual and semantic embeddings independently and fuse them without full consideration of the long-term temporal relationship between them. To address these shortcomings, we introduce a novel recurrent unit, cross-modal long short-term memory (CM-LSTM), by mimicking the human cognitive process of localizing temporal moments that focuses on the part of a video segment related to the part of a query, and accumulates the contextual information across the entire video recurrently. In addition, we devise a two-stream attention mechanism for both attended and unattended video features by the input query to prevent necessary visual information from being neglected. To obtain more precise boundaries, we propose a two-stream attentive cross-modal interaction network (TACI) that generates two 2D proposal maps obtained globally from the integrated contextual features, which are generated by using CM-LSTM, and locally from boundary score sequences and then combines them into a final 2D map in an end-to-end manner. On the TML benchmark dataset, ActivityNet-Captions, the TACI outperform state-of-the-art TML methods with R@1 of 45.50 show that the revised state-of-the-arts methods by replacing the original LSTM with our CM-LSTM achieve performance gains.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset