Learning to Jointly Deblur, Demosaick and Denoise Raw Images

04/13/2021
by   Thomas Eboli, et al.
0

We address the problem of non-blind deblurring and demosaicking of noisy raw images. We adapt an existing learning-based approach to RGB image deblurring to handle raw images by introducing a new interpretable module that jointly demosaicks and deblurs them. We train this model on RGB images converted into raw ones following a realistic invertible camera pipeline. We demonstrate the effectiveness of this model over two-stage approaches stacking demosaicking and deblurring modules on quantitive benchmarks. We also apply our approach to remove a camera's inherent blur (its color-dependent point-spread function) from real images, in essence deblurring sharp images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro