Learning to Rank Scientific Documents from the Crowd

by   Jesse M Lingeman, et al.
University of Massachusetts Amherst
University of Massachusetts Medical School

Finding related published articles is an important task in any science, but with the explosion of new work in the biomedical domain it has become especially challenging. Most existing methodologies use text similarity metrics to identify whether two articles are related or not. However biomedical knowledge discovery is hypothesis-driven. The most related articles may not be ones with the highest text similarities. In this study, we first develop an innovative crowd-sourcing approach to build an expert-annotated document-ranking corpus. Using this corpus as the gold standard, we then evaluate the approaches of using text similarity to rank the relatedness of articles. Finally, we develop and evaluate a new supervised model to automatically rank related scientific articles. Our results show that authors' ranking differ significantly from rankings by text-similarity-based models. By training a learning-to-rank model on a subset of the annotated corpus, we found the best supervised learning-to-rank model (SVM-Rank) significantly surpassed state-of-the-art baseline systems.


page 1

page 2

page 3

page 4


MeSHup: A Corpus for Full Text Biomedical Document Indexing

Medical Subject Heading (MeSH) indexing refers to the problem of assigni...

On the Composition of Scientific Abstracts

Scientific abstracts contain what is considered by the author(s) as info...

A Joint Learning Approach based on Self-Distillation for Keyphrase Extraction from Scientific Documents

Keyphrase extraction is the task of extracting a small set of phrases th...

Identification of functionally related enzymes by learning-to-rank methods

Enzyme sequences and structures are routinely used in the biological sci...

MetaMetaZipf. What do analyses of city size distributions have in common?

In this article, I conduct a textual and contextual analysis of the empi...

Please sign up or login with your details

Forgot password? Click here to reset