Learning-to-Rank with BERT in TF-Ranking

04/17/2020
by   Shuguang Han, et al.
0

This paper describes a machine learning algorithm for document (re)ranking, in which queries and documents are firstly encoded using BERT [1], and on top of that a learning-to-rank (LTR) model constructed with TF-Ranking (TFR) [2] is applied to further optimize the ranking performance. This approach is proved to be effective in a public MS MARCO benchmark [3]. Our submissions achieve the best performance for the passage re-ranking task as of March 30, 2020 [4], and the second best performance for the passage full-ranking task as of April 10, 2020 [5], demonstrating the effectiveness of combining ranking losses with BERT representations for document ranking.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro