Lessons Learned from Real-World Experiments with DyRET: the Dynamic Robot for Embodied Testing

by   Tønnes F. Nygaard, et al.

Robots are used in more and more complex environments, and are expected to be able to adapt to changes and unknown situations. The easiest and quickest way to adapt is to change the control system of the robot, but for increasingly complex environments one should also change the body of the robot -- its morphology -- to better fit the task at hand. The theory of Embodied Cognition states that control is not the only source of cognition, and the body, environment, interaction between these and the mind all contribute as cognitive resources. Taking advantage of these concepts could lead to improved adaptivity, robustness, and versatility, however, executing these concepts on real-world robots puts additional requirements on the hardware and has several challenges when compared to learning just control. In contrast to the majority of work in Evolutionary Robotics, Eiben argues for real-world experiments in his `Grand Challenges for Evolutionary Robotics'. This requires robust hardware platforms that are capable of repeated experiments which should at the same time be flexible when unforeseen demands arise. In this paper, we introduce our unique robot platform with self-adaptive morphology. We discuss the challenges we have faced when designing it, and the lessons learned from real-world testing and learning.


Exploring Mechanically Self-Reconfiguring Robots for Autonomous Design

Evolutionary robotics has aimed to optimize robot control and morphology...

Self-Modifying Morphology Experiments with DyRET: Dynamic Robot for Embodied Testing

Robots need to be able to adapt to complex and dynamic environments for ...

Real-World Modeling of a Pathfinding Robot Using Robot Operating System (ROS)

This paper presents a practical approach towards implementing pathfindin...

Evolved embodied phase coordination enables robust quadruped robot locomotion

Overcoming robotics challenges in the real world requires resilient cont...

Continual Learning of Visual Concepts for Robots through Limited Supervision

For many real-world robotics applications, robots need to continually ad...

An Architecture for Autonomously Controlling Robot with Embodiment in Real World

In the real world, robots with embodiment face various issues such as dy...

Multi-embodiment Legged Robot Control as a Sequence Modeling Problem

Robots are traditionally bounded by a fixed embodiment during their oper...

Please sign up or login with your details

Forgot password? Click here to reset