Lightweight integration of 3D features to improve 2D image segmentation

12/16/2022
by   Olivier Pradelle, et al.
0

Scene understanding is a major challenge of today's computer vision. Center to this task is image segmentation, since scenes are often provided as a set of pictures. Nowadays, many such datasets also provide 3D geometry information given as a 3D point cloud acquired by a laser scanner or a depth camera. To exploit this geometric information, many current approaches rely on both a 2D loss and 3D loss, requiring not only 2D per pixel labels but also 3D per point labels. However obtaining a 3D groundtruth is challenging, time-consuming and error-prone. In this paper, we show that image segmentation can benefit from 3D geometric information without requiring any 3D groundtruth, by training the geometric feature extraction with a 2D segmentation loss in an end-to-end fashion. Our method starts by extracting a map of 3D features directly from the point cloud by using a lightweight and simple 3D encoder neural network. The 3D feature map is then used as an additional input to a classical image segmentation network. During training, the 3D features extraction is optimized for the segmentation task by back-propagation through the entire pipeline. Our method exhibits state-of-the-art performance with much lighter input dataset requirements, since no 3D groundtruth is required.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset