Linear Quadratic Regulator Design for Multi-input Systems with A Distributed Cooperative Strategy

07/27/2021
by   Peihu Duan, et al.
0

In this paper, a cooperative Linear Quadratic Regulator (LQR) problem is investigated for multi-input systems, where each input is generated by an agent in a network. The input matrices are different and locally possessed by the corresponding agents respectively, which can be regarded as different ways for agents to control the multi-input system. By embedding a fully distributed information fusion strategy, a novel cooperative LQR-based controller is proposed. Each agent only needs to communicate with its neighbors, rather than sharing information globally in a network. Moreover, only the joint controllability is required, which allows the multi-input system to be uncontrollable for every single agent or even all its neighbors. In particular, only one-time information exchange is necessary at every control step, which significantly reduces the communication consumption. It is proved that the boundedness (convergence) of the controller gains is guaranteed for time-varying (time-invariant) systems. Furthermore, the control performance of the entire system is ensured. Generally, the proposed controller achieves a better trade-off between the control performance and the communication overhead, compared with the existing centralized/decentralized/consensus-based LQR controllers. Finally, the effectiveness of the theoretical results is illustrated by several comparative numerical examples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset