Linking Common Vulnerabilities and Exposures to the MITRE ATT CK Framework: A Self-Distillation Approach

08/03/2021
by   Benjamin Ampel, et al.
0

Due to the ever-increasing threat of cyber-attacks to critical cyber infrastructure, organizations are focusing on building their cybersecurity knowledge base. A salient list of cybersecurity knowledge is the Common Vulnerabilities and Exposures (CVE) list, which details vulnerabilities found in a wide range of software and hardware. However, these vulnerabilities often do not have a mitigation strategy to prevent an attacker from exploiting them. A well-known cybersecurity risk management framework, MITRE ATT CK, offers mitigation techniques for many malicious tactics. Despite the tremendous benefits that both CVEs and the ATT CK framework can provide for key cybersecurity stakeholders (e.g., analysts, educators, and managers), the two entities are currently separate. We propose a model, named the CVE Transformer (CVET), to label CVEs with one of ten MITRE ATT CK tactics. The CVET model contains a fine-tuning and self-knowledge distillation design applied to the state-of-the-art pre-trained language model RoBERTa. Empirical results on a gold-standard dataset suggest that our proposed novelties can increase model performance in F1-score. The results of this research can allow cybersecurity stakeholders to add preliminary MITRE ATT CK information to their collected CVEs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset