List Autoencoder: Towards Deep Learning Based Reliable Transmission Over Noisy Channels

12/19/2021
by   Hamid Saber, et al.
0

There has been a growing interest in automating the design of channel encoders and decoders in an auto-encoder(AE) framework in recent years for reliable transmission of data over noisy channels. In this paper we present a new framework for designing AEs for this purpose. In particular, we present an AE framework, namely listAE, in which the decoder network outputs a list of decoded message word candidates. A genie is assumed to be available at the output of the decoder and specific loss functions are proposed to optimize the performance of the genie-aided (GA)-listAE. The listAE is a general AE framework and can be used with any network architecture. We propose a specific end-to-end network architecture which decodes the received word on a sequence of component codes with decreasing rates. The listAE based on the proposed architecture, referred to as incremental redundancy listAE (IR-listAE), improves the state-of-the-art AE performance by 1 dB at low block error rates under GA decoding. We then employ cyclic redundancy check (CRC) codes to replace the genie at the decoder, giving CRC-aided (CA)-listAE with negligible performance loss compared to the GA-listAE. The CA-listAE shows meaningful coding gain at the price of a slight decrease in the rate due to appending CRC to the message word.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro