Local Loss Optimization in Operator Models: A New Insight into Spectral Learning

06/27/2012
by   Borja Balle, et al.
0

This paper re-visits the spectral method for learning latent variable models defined in terms of observable operators. We give a new perspective on the method, showing that operators can be recovered by minimizing a loss defined on a finite subset of the domain. A non-convex optimization similar to the spectral method is derived. We also propose a regularized convex relaxation of this optimization. We show that in practice the availabilty of a continuous regularization parameter (in contrast with the discrete number of states in the original method) allows a better trade-off between accuracy and model complexity. We also prove that in general, a randomized strategy for choosing the local loss will succeed with high probability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro