Localising change points in piecewise polynomials of general degrees
In this paper we are concerned with a sequence of univariate random variables with piecewise polynomial means and independent sub-Gaussian noise. The underlying polynomials are allowed to be of arbitrary but fixed degrees. We propose a two-step estimation procedure based on the ℓ_0-penalisation and provide upper bounds on the localisation error. We complement these results by deriving information-theoretic lower bounds, which show that our two-step estimators are nearly minimax rate-optimal. We also show that our estimator enjoys near optimally adaptive performance by attaining individual localisation errors depending on the level of smoothness at individual change points of the underlying signal.
READ FULL TEXT