Locality Preserving Joint Transfer for Domain Adaptation
Domain adaptation aims to leverage knowledge from a well-labeled source domain to a poorly-labeled target domain. A majority of existing works transfer the knowledge at either feature level or sample level. Recent researches reveal that both of the paradigms are essentially important, and optimizing one of them can reinforce the other. Inspired by this, we propose a novel approach to jointly exploit feature adaptation with distribution matching and sample adaptation with landmark selection. During the knowledge transfer, we also take the local consistency between samples into consideration, so that the manifold structures of samples can be preserved. At last, we deploy label propagation to predict the categories of new instances. Notably, our approach is suitable for both homogeneous and heterogeneous domain adaptation by learning domain-specific projections. Extensive experiments on five open benchmarks, which consist of both standard and large-scale datasets, verify that our approach can significantly outperform not only conventional approaches but also end-to-end deep models. The experiments also demonstrate that we can leverage handcrafted features to promote the accuracy on deep features by heterogeneous adaptation.
READ FULL TEXT