Locating the Closest Singularity in a Polynomial Homotopy

05/15/2022
by   Jan Verschelde, et al.
0

A polynomial homotopy is a family of polynomial systems, where the systems in the family depend on one parameter. If for one value of the parameter we know a regular solution, then what is the nearest value of the parameter for which the solution in the polynomial homotopy is singular? For this problem we apply the ratio theorem of Fabry. Richardson extrapolation is effective to accelerate the convergence of the ratios of the coefficients of the series expansions of the solution paths defined by the homotopy. For numerical stability, we recondition the homotopy. To compute the coefficients of the series we propose the quaternion Fourier transform. We locate the closest singularity computing at a regular solution, avoiding numerical difficulties near a singularity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset