Location-aware Adaptive Denormalization: A Deep Learning Approach For Wildfire Danger Forecasting

Climate change is expected to intensify and increase extreme events in the weather cycle. Since this has a significant impact on various sectors of our life, recent works are concerned with identifying and predicting such extreme events from Earth observations. This paper proposes a 2D/3D two-branch convolutional neural network (CNN) for wildfire danger forecasting. To use a unified framework, previous approaches duplicate static variables along the time dimension and neglect the intrinsic differences between static and dynamic variables. Furthermore, most existing multi-branch architectures lose the interconnections between the branches during the feature learning stage. To address these issues, we propose a two-branch architecture with a Location-aware Adaptive Denormalization layer (LOADE). Using LOADE as a building block, we can modulate the dynamic features conditional on their geographical location. Thus, our approach considers feature properties as a unified yet compound 2D/3D model. Besides, we propose using an absolute temporal encoding for time-related forecasting problems. Our experimental results show a better performance of our approach than other baselines on the challenging FireCube dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro