Low discrepancy sequences failing Poissonian pair correlations

03/05/2019
by   Verónica Becher, et al.
0

M. Levin defined a real number x that satisfies that the sequence of the fractional parts of (2^n x)_n≥ 1 are such that the first N terms have discrepancy O(( N)^2/ N), which is the smallest discrepancy known for this kind of parametric sequences. In this work we show that the fractional parts of the sequence (2^n x)_n≥ 1 fail to have Poissonian pair correlations. Moreover, we show that all the real numbers x that are variants of Levin's number using Pascal triangle matrices are such that the fractional parts of the sequence (2^n x)_n≥ 1 fail to have Poissonian pair correlations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro